CITY OF BLANCO

PRELIMINARY INVESTIGATIONS AND REPORT WASTEWATER COLLECTION SYSTEM IMPROVEMENTS FOR PROPOSED SERVICE AREA

January 2, 2020

SMITH TURRIETA ENGINEERING

Smith Turrieta Engineering
TBPE No. F-16076

PO Box 5902
Austin, TX 78763
512.569.9022
susan@smithturrieta.com

EXECUTIVE SUMMARY

This technical memorandum has been prepared to identify future wastewater flows and infrastructure needs within the proposed service area outlined in Exhibit A. This memorandum focuses on the development south of Blanco River and does not include land use assumptions or flow projections north of the river or within the City limits.

In general the topography of the service area slopes west to east. The area south of Blanco River has primarily three watersheds. Exhibit B, the City's Wastewater Capital Improvement Plan (Jones-Heroy \& Associates) identifies three wastewater basins that complement this topography. This exhibit identifies the need for 4 wastewater lift stations south of Blanco River. In this preliminary investigation the concept of conveying the wastewater adjacent to US Hwy. 281 was investigated.

In developing this memorandum, existing data was reviewed to assist in the development of land use projections within the proposed service area. These land use projections and associated acreage were then used to develop average, peak and wet weather wastewater flows.

This alignment would require a 15 inch gravity interceptor and two lift stations to keep the depth of the gravity interceptor from exceeding 25 feet. In this study it's assumed that the second lift station would convey wastewater under Blanco River and discharge into the existing collection system and ultimately be conveyed to the wastewater treatment plant. The scope of this study did not verify if the existing collection system north of Blanco River has the capacity to accept these additional flows.

The engineer's opinion of probable construction cost was completed for two lift stations and a gravity interceptor. The construction cost estimate includes a engineering design fee of 25 percent of the construction cost and a contingency of 25 percent. The cost estimate does not include costs for easement acquisition, topographical survey, or geotechnical investigations. The assumptions and clarifications for the study and the infrastructure needs are summarized below and explained in greater detail within the memorandum.

DESIGN PARAMETERS / ASSUMPTIONS / CONSIDERATIONS / FINDINGS

- Study area is limited to south of the Blanco River
- Proposed gravity interceptor alignment flows south to north along US Hwy. 281
- Study did not cover possible need of smaller lift stations to convey wastewater from the developed areas to the proposed alignment
- Wastewater flow generation within the City Limits was not included in this study
- This study did not verify if the existing collection system north of Blanco River has the capacity to accept additional flows identified in this study
- Cost estimate does not include costs for easement acquisition
- Infrastructure requirements
o Lift Station 1-0.9 mgd
o Lift Station 2-4.4 mgd
o 15 inch Gravity Wastewater Interceptor - 15,800 linear feet
- Engineers opinion of probable construction cost $\$ 5$ million
- Engineering design cost $\$ 1.25$ million

BACKGROUND

This technical memorandum has been prepared to identify future wastewater flows and infrastructure needs within the proposed service area outlined in Exhibit A. This memorandum focuses on the development south of Blanco River and does not include land use assumptions or flow projections north of the river or within the City limits. The infrastructure assumptions for conveyance of the wastewater are schematic in nature with measurements taken from existing GIS platforms. The intended use of this memorandum is conceptual, no topographic survey, geotechnical investigations, or easement research has been performed in the preparation of this memorandum.

DATA REVIEW

The following maps and records were used to assist with recognizing the study boundary area and the current land use and owner information. This information was then used to develop land use assumptions and projected growth.

1. Exhibit A - City of Blanco Water and Wastewater Service Area Map (Jones-Heroy, September 2018)
2. Exhibit B - City of Blanco Wastewater Capital Improvements Plan (Jones-Heroy, September 2018)
3. Blanco County Appraisal District www.blancocad.com
4. TPDES Permit Application - City of Blanco WWTP

CITY OF BLANCO TPDES PERMIT

The City of Blanco currently operates under a 0.225 MGD Texas Pollutant Discharge Elimination System (TPDES) wastewater permit. A permit "Renewal and Major Amendment" application has been submitted to the Texas Commission on Environmental Quality (TCEQ) for review. This amendment proposes a new wastewater treatment plant on the existing site. The proposed capacities of the permit amendment are broken into three phases as noted below. Phase I, the current permitted capacity of 0.225 MGD is currently in operation.
Permit Renewal and Major Amendment
City of Blanco 0.225 MGD Wastewater Treatment Plant
TPDES Permit No.: 10549002
Engineer: Darren C. Strozewski, P.E.
Applicant: City of Blanco

Phase I $\quad 0.225$ MGD (existing permit)
Phase II $\quad 0.950$ MGD (Amendment)
Phase III $\quad 1.60$ MGD (Amendment)

The information below is quoted from Section O "Explanation of the Need for Proposed Permit" of the permit renewal and modification application.
"Current City limits encompass approximately 1,400 acres of which a substantial portion is currently undeveloped or under developed. This 1,400 acres conservatively yields 1,400 wastewater service connections at one unit per acre, which equals 0.315 mgd using an average daily flow of 225 gallons per connection. In addition, the City's wastewater service area has been expanded by approximately 8,500 acres of privately owned land located adjacent to the City limits. This area is anticipated to develop as economic conditions continue to improve and when regional wastewater and water, and reclaimed water capacities are readily available from the City. The future 8,500 acre wastewater service area would conservatively yield 8,500 new wastewater service connections at one unit per acre, which equals 1.912 mgd using an average daily flow of 225 gallons per connection. Thus, the total wastewater service area capacity is 2.227 mgd .

This statement defines the future development within the City Limits to be limited to 225 gallons per acre. This assumption does not take into account commercial or high density residential development within the City limits.

LAND USE PROJECTIONS

Land use must be identified in order to calculate projected wastewater flows. In this memorandum, the area assessed is limited to the proposed service area shown in Exhibit A and is limited to south of the Blanco River and does not take into consideration the land within the City Limits. Land use assumptions were determined based on current development, the vicinity to the City Limits, and commercial verses private ownership. In order to group like areas the proposed service area was subdivided into 14 smaller areas. For residential homes it was assumed that the larger lots 2-6 acres would vary due to topography and individual ownership, an average of 4 acres per lot was used in the calculations. A color coded Map of how these areas were zoned for the wastewater flow development are shown on Exhibit C. Appendix A shows a more detailed breakdown of each area indicating percentages of residential and commercial categories. The percentages of each type of land use are summarized on the next page.

LAND USE BREAKDOWN

Residential

Single Family Home, $1 / 4$ Acre Lots 22.8\%

Single Family Home 2-6 Acre Lots............ 37.4\%
Multi Family.. 7.2%
Commercial
Motel with kitchen.. 0.
Shopping Center ...-. 5.1%
Restaurant ..
Office.. 5.0%
Industrial Building..
Kennels/Stables ...-2.9\%
Other (no wastewater flows were generated from the following land uses)
Agriculture/Ranch/Farm................................... 0.7
Park Land 9.9\%

WASTEWATER FLOW PROJECTIONS

The wastewater flow projections were developed based on land use and acreage. The Average Dry Weather Flows (ADWF) were developed based on guidelines by TCEQ Chapter 217, Design Organic Loadings and Flows for New Wastewater Treatment Facilities https://www.tceq.texas.gov/assets/public/legal/rules/rules/pdflib/217c.pdf, and the 10 State Standards. The developed flows used for this study are summarized below.

Average Dry Weather Flow (ADWF) (Qad)		
Residential	Flow	Description
Single Family Home 1/4 Acre Lot	245 gpd per home	$70 \mathrm{gpd} \mathrm{pp}$,3.5 persons per home. 1/4 acre lot
Single Family Home 2-6 Acre Lot	280 gpd per home	$80 \mathrm{gpd} \mathrm{pp}, 3.5$ persons per home, 2-6 acre lot
Multi Family	1,950 gpd per acre	$65 \mathrm{gpd} \mathrm{pp}, 1.5$ persons per unit, 20 units per acre
Commercial	Flow	Description
Motel with kitchen	2,000 gpd per acre	100 gpd per unit, 20 units per acre
Shopping Center	164 gpd per acre	$12 \mathrm{gpd} /$ employee, $2 \mathrm{gpd} / 2$ parking spaces, 12 employees/ AC , 20 parking spaces AC
Restaurant	600 gpd per acre	3 gpd per meal, 200 meals per day
Office	195 gpd per acre	13 gpd per employee, 15 employees per AC
Industrial Building	104 gpd per acre	13 gpd per employee, 8 employee per AC
Kennels/Stables	13 gpd per acre	13 gpd per employee, 1 employee per AC
Park Land	0 gpd per acre	No wastewater service provided
Private	Flow	Description
/Agriculture/Ranch/Farm	0 gpd per acre	No wastewater service provided

The average dry weather, peak dry weather and peak wet weather flows were calculated per the City of Austin design criteria for each area. These areas were summed accumulatively from the southern limits of the proposed service area to Blanco River and are included in Appendix B. The total accumulated flow for the proposed service area south of the river are shown below.

- Average Dry Weather Flow (ADWF) 0.5 mgd
- Peak Dry Weather Flow (PDWF) 2.2 mgd
- Peak Wet Weather Flow (PWWF) 4.4 mgd

INFRASTRUCTURE DESIGN PARAMETERS

In general the topography of the service area slopes west to east. The area south of Blanco River has primarily three watersheds, one that flows to Flat Creek, one that flows to Durham Branch and one that flows directly to the Blanco River. Flat Creek and Durham Branch ultimately confluence with the Blanco River just east and outside of the proposed service area. Exhibit B, the City's Wastewater Capital Improvement Plan (CIP) (Jones-Heroy \& Associates) identifies three wastewater basins that complement this topography. The Exhibit B identifies the need for 4 wastewater lift stations south of Blanco River.

In this preliminary investigation the concept of conveying the wastewater adjacent to US Hwy. 281 was investigated. This alignment would require a Lift Station (LS 1) north of Flat Creek to convey flows over the ridge and into the next watershed that conveys flow to Durham Branch and a Lift Station (LS 2) north of Durham Branch to convey flows over the next ridge and ultimately under the Blanco River. In this study it's assumed that the discharge from LS 2 (north of Blanco River) would discharge into the existing collection system and ultimately be conveyed to the wastewater treatment plant. Exhibit D shows the schematic representation of this alignment.

If the capacity of the existing collection system (north of the river) is not sufficient a new gravity interceptor or a lift station and forcemain or combination thereof would be required. Cost for infrastructure north of Blanco River is outside the scope of this report.

- Lift Station 1 (north of Flat Creek)
o Design flow 680 gpm
o Submersible Duplex
o Wet Well 12^{\prime} dia. X 30^{\prime} deep
o Pumps (2) $40 \mathrm{HP}, 460 \mathrm{~V} 3 \mathrm{PH}, 60 \mathrm{~Hz}$, (680 gpm @ 100' TDH)
- Lift Station 2 (north of Durham Branch)
o Design flow 3098 gpm
o Submersible Triplex
o Wet Well 24^{\prime} dia. X 40^{\prime} deep
o Pumps (3) $60 \mathrm{HP}, 460 \mathrm{~V} 3 \mathrm{PH}, 60 \mathrm{~Hz}$, (2,850 gpm @ 100' TDH 2 pumps running)
Gravity interceptor flow capacities were calculated per the City of Austin and TCEQ design standards with a slope of 1%. Using this design criteria a 12 inch gravity interceptor would be required at the beginning of the alignment and it would transition into a 15 inch interceptor south of the intersection of RR 32. With this alternative depths of the gravity interceptor did not exceed 20 feet. Lift Station 2 identified at Durham Branch could possibly be replaced with a siphon however this option is not included in the scope of this study.

WATER REUSE

If the wastewater generated in this study was to be treated and returned to the same service area the TPDES permit would need to be revised and wider easements would need to be obtained to account for the required 10 foot separation from the wastewater line and surrounding water lines. The infrastructure required for this would include a new reclaimed water delivery system including pumping, elevated storage, pipe lines and associated appurtenances. The design for this system is outside the scope if this study. A conservative estimate for the construction of the pipe line only would be approximately $\$ 70$ per linear foot. Using the same footage of wastewater interceptor (15,800 If) would equate to a construction cost of $\$ 1,106,000$. Costs for easement acquisition, survey, geotechnical investigations, design and the construction of the delivery system would also need to be included.

Reclaimed water line construction cost \$1.1 million*
*cost does not include design, survey, geotechnical investigations, easement acquisition or construction cost for pump station/elevated storage.

COST ESTIMATES

Engineers Opinion of Probable Construction cost is include in Appendix C. This construction cost estimate is based on the wastewater infrastructure identified in the previous section of this report. For economic and future capacity reasons a 15 inch interceptor was used for the entire reach. The construction cost estimate includes a contingency of 25 percent. A cost for engineering, survey, and geotechnical investigations was included at 25% of the construction cost.

Engineers Opinion of Probable Construction Cost \$5.6 million*
Engineering design, survey and geotechnical investigations
\$1.25 million*
*cost does not include easement acquisition

EXHIBITS

Exhibit A - City of Blanco Water and Wastewater Service Area Map (Jones-Heroy, September 2018)
Exhibit B - City of Blanco Wastewater Capital Improvements Plan (Jones-Heroy, September 2018)
Exhibit C - Land Use Assumptions

APPENDICES

Appendix A - Land Use Assumptions
Appendix B - Wastewater Flow Calculations

Appendix C - Engineers Opinion of Probable Construction Cost

EXHIBIT A

EXHIBIT B

EXHIBIT C

LAND USE MAP

12/10/2019, 4:32:20 PM

1:31,279			
0	0.35	0.7	1.4 mi
0	0.5	1	

EXHIBIT C

LAND USE MAP

APPENDIX A

AREA 1-HH FAMILY INVESTMENTS II LTD						
PROPERTY ID	LEGAL DESCRIPTION	QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
9198	ABS A1300 SURVEY $21 / 2$ PAULINE JONAS,ACRES 30.75	30.75	AC			
9197	ABS A0983 SURVEY 74 A. BECKMAN,ACRES 35.0	35.00	AC			
9199	ABS A1299 SURVEY 167 1/2 PAULINE JONAS,ACRES 12.5	12.50	AC			
9193	ABS A1070 SURVEY 81 F. Vollmering, ACRES 21.5	21.50	AC			
8561	ABS A1070 SURVEY 81 F . VOLLMERING,ACRES 79.91,(MO RANCH)	79.91	AC			
9189	ABS A0622 SURVEY 167 J WILSON,ACRES 316.96	316.96	AC			
8559	ABS A0582 SURVEY 168 Q.C. STEPHANS,ACRES 62.4,(MO RANCH)	62.40	AC			
2279	ABS A0582 SURVEY 168 Q.C. STEPHANS,ACRES 34.292	34.20	AC			
9200	ABS A0827 SURVEY 161 FRIEDRICH MULLER,ACRES 145.0	145.00	AC			
9195	ABS A0632 SURVEY 93 W.C. WINTERS,ACRES 42.13	42.10	AC			
3224	ABS A0582 SURVEY 168 Q.C. STEPHANS,ACRES 1.46	1.46	AC			
3225	ABS A0582 SURVEY 168 Q.C. STEPHANS,ACRES 1.375	1.30	AC			
14968	ABS A0622 SURVEY 167 J WILLON,ACRES 3.04	3.40	AC			
14969	ABS A0582 SURVEY 168 Q.C. STEPHANS,ACRES 9.16	9.16	AC			
15847	BLANCO VISTA ESTATES, LOT 01, ACRES 5.01	5.00	AC			
15848	BLANCO VISTA ESTATES, LOT 02, ACRES 5.01	5.00	AC			
9188	ABS A1058 SURVEY 30 AUGUST JONAS,ACRES 56.75	11.35	AC			a portion (20\%) of lot in inside of proposed service area boundary
9194	ABS A0696 SURVEY 73 HENDERSON \& OBRR CO.,ACRES 320.0	0.00	AC			adjacent to but outside of proposed service area boundary
9187	ABS A0333 SURVEY 724 SOPHIA JONAS,ACRES 43.0	0.00	AC			adjacent to but outside of proposed service area boundary
	Total	816.99	AC			
		122.55	AC	15\%	PARK LAND	
		138.89	AC	17\%	INDUSTRIAL	Frontage along US 281
		490.19	AC	60\%	SF RESIDENTS, 2-6 AC LOTS	
		65.36		8\%	OFFICE	
				100\%		
		123	LOTS		4 AC LOTS	
AREA 2 - BLANCO VISTA ESTATES (BLANCO VISTA DR)						
PROPERTY ID	LeGAL DESCRIPTION	QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
15850	BLANCO VISTA ESTATES , LOT 04, ACRES 5.06	5.05	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15851	BLANCO VISTA ESTATES, LOT 05 , ACRES 5.28	5.28	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15852	BLANCO VISTA ESTATES, LOT 06, ACRES 5.47	5.47	AC		LUXURY RESIDENTS 2-6 AC Lots	
15853	BLANCO VISTA ESTATES , LOT 07 , ACRES 5.34	5.34	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15854	BLANCO VISTA ESTATES, LOT 08, ACRES 5.01	5.01	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15855	blanco vista estates, LOT 09, ACRES 5.07	5.07	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15856	bLANCO VISTA ESTATES, LOT 10 , ACRES 5.3	5.30	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15857	BLANCO VISTA ESTATES, LOT 11 , ACRES 5.33	5.33	AC		LUXURY RESIDENTS 2-6 AC LOTS	
15858	BLANCO VISTA ESTATES , LOT 12 , ACRES 5.68	5.68	AC		LUXURY RESIDENTS 2-6 AC LOTS	
16146	BLANCO VISTA ESTATES, LOT 13 \& 14, ACRES 10.91	10.91	AC		LUXURY RESIDENTS 2-6 AC LOTS	
16147	?	0.00	AC		LUXURY RESIDENTS 2-6 AC LOTS	
16148	BLANCO VISTA ESTATES, LOT 15 , ACRES 11.26, Undivided Interest 42.0000	11.26	AC		OFFICE	
16149	BLANCO VISTA ESTATES, LOT 16, ACRES 11.26, Undivided Interest 42.0000	11.26	AC		OFFICE	
16150	BLANCO VISTA ESTATES, LOT 17 , ACRES 10.0, Undivided Interest 42.00000	10.00	AC		SHOPS	
16151	BLANCO VISTA ESTATES, LOT 18 , ACRES 10.0, Undivided Interest 42.00000	10.00	AC		SHOPS	
-	TOTAL	100.96	AC			
		21.20	AC	21\%	OFFICES	
		21.20	AC	21\%	SHOPPING	
		58.56	AC	58\%	SF RESIDENTS 2-6 AC LOTS	
				100\%		
		11	LOTS		EXISTING 5-10 AC LOTS	

AREA 3-ABS A0632	EY 93 W.C.WINTERS						
PROPERTY ID	LEGAL DESCRIPTION		QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
14911	ABS A0632 SURVEY 93 W.C. WINTERS,ACRES 115.305		115.31	AC		STABLES	50\% DEVELOPED WITH RANCH HOUSE AND STABLES
14068	ABS A0632 SURVEY 93 W.C. WINTERS,ACRES 46.92		46.92	AC		STABLES	LAND LOCKED
		TOTAL	162.23	AC			
			12.98	AC	8\%	SF RESIDENTS 6 AC LOT	
			74.62	AC	46\%	AGRICULTURE/STABLES	
			74.62	AC	46\%	INDUSTRIAL	
					100\%		
			1	LOT		EXISTING RESIDENTS	
AREA 4 - BRADLEY HA	E ESTATE						
PROPERTY ID	LEGAL DESCRIPTION		QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
4006	ABS A0827 SURVEY 161 FRIEDRICH MULLER,ACRES 15.0		15.00	AC			
14141	ABS A0970 SURVEY 2 J.W. SPEER,ACRES 59.0		59.00	AC			
14140	ABS A0314 SURVEY 1 INDIANOLO RR CO,ACRES 126.0		126.00	AC			
		TOTAL	200.00	AC			
			30.00	AC	15\%	PARK LAND	
			0.00	AC	0\%	Office	
			170.00	AC	85\%	SF RESIDENCE 1/4 AC LOTS	
					100\%		
			680	LOTS		1/4 AC LOTS	
AREA 5- BECKMANN	MITHERMAN						
PROPERTY ID	LEGAL DESCRIPTION		QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
10736	ABS A0399 SURVEY 94 JOHN McCLENCHENON,ACRES 558.63		558.63	AC			
		TOTAL	558.63	AC			
			83.79	AC	20\%	PARK LAND	
			223.45	AC	40\%	SF RESIDENTS 2-6 AC LOTS	
			223.45	AC	40\%	SF RESIDENCE 1/4 AC LOTS	
					100\%		
			894	LOTS		1/4 AC LOTS	
			56	LOTS		4 AC LOTS	
AREA 6-ABS A0591	EY 92 WM. N. TRAINER (WEST OF 281)						
PROPERTY ID	legal description		QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
14436	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 1.9		0.00	AC		PRIVATE ROAD	
16627	AbS A0591 SURVEY 92 Wm. N. TRAINER,ACRES 11.11		11.11	AC		INDUSTRIAL WITH RESIDENTS	
4038	AbS A0591 SURVEY 92 WM. N. TRAINER,ACRES 13.76		13.76	AC		INDUSTRIAL WITH RESIDENTS	
4465	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 6.96		6.96	AC		INDUSTRIAL WITH RESIDENTS	
10904	ABS A0591 SURVEY 92 Wm. N. TRAINER,ACRES 3.913		3.91	AC		INDUSTRIAL WITH RESIDENTS	
7994	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 6.64		6.64	AC		KENNEL WITH RESIDENTS	
		TOTAL	42.38	AC			
			0.00	AC	0\%	LUXURY RESIDENTS 4 AC LOTS	
			0.00	AC	0\%	SHOPPING	
			36.03	AC	85\%	INDUSTRIAL	
			6	AC	15\%	KENNEL	
					100\%		
			5	LOTS		2-6 AC LOTS	

AREA 7- DALEY PHILP							
PROPERTY ID	LeGAl description		QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
3270	ABS A0314 SURVEY 1 INDIANOLO RR CO,ACRES 283.21		283.21	AC			
14435	AbS A0314 SURVEY 1 INDIANOLO RR CO,ACRES 8.0		8.00	AC			
		TOTAL	291.21	AC			
			0.00	AC	0\%	AGRICULTURE/RANCH/FARM	
			0.00	AC	0\%	LUXURY RESIDENTS, 2-6 AC LOTS	
			116.48	AC	40\%	SINGLE FAMILY RESIDENTS 1/4 AC LOTS	
			116.48	AC	40\%	MULTI-FAMILY RESIDENTS	
			0.00	AC	0\%	MOTEL WITH KITCHEN	
			0.00	AC	0\%	RESTAURANT	
			0.00	AC	0\%	SHOPPING	
			0.00	AC	0\%	OFFICE	
			0.00	AC	0\%	INDUSTRIAL	
			0.00	AC		STABLES/KENNELS	
			58.24	AC	20\%	PARK LAND	
					100\%		
			466	LOTS		1/4 AC LOTS	
	,						
	-						
AREA 8-ABS A0591 SUR	EY 92 WM. N. TRAINER (EAST OF 281)						
PROPERTY ID	LEGAL DESCRIPTION		QTY	UNITS	PERCENT	PROPOSED LAND USE	COMMENTS
3811	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 47.49		47.49	AC		OfFICE	
14200	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 5.98		5.98	AC		SHOPPING	
6808	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 5.0		5.00	AC		LUXURY RESIDENTS	
3950	AbS A0591 SURVEY 92 WM. N. TRAINER,ACRES 40.345, Undivided Inte	terest	40.35	AC		SHOPPING \& RESTAURANT	
19092	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 20.0,SN1 12402584A;H	;HUD\#	20.00	AC		CHURCH (OFFICE)	
17817	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 24.043,SN1 12402584A	AA; HU	24.04	AC		MULTI FAMILY	
6023	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 40.0		40.00	AC		SHOPPING AND RESTAURANT	
10714	ABS A0591 SURVEY 92 WM. N. TRAINER,ACRES 8.37		8.37	AC		MULTI FAMILY	
		TOTAL	191.23	AC			
			0.00	AC	0\%	AGRICULTURE/RANCH/FARM	
			0.00	AC	0\%	LUXURY RESIDENTS, 2-6 AC LOTS	
			0.00	AC	0\%	SINGLE FAMILY RESIDENTS 1/4 AC LOTS	
			28.68	AC	15\%	MULTI-FAMILY RESIDENTS	
			13.39	AC	7\%	MOTEL WITH KITCHEN	
			5.74	AC	3\%	RESTAURANT	
			57.37	AC	30\%	SHOPPING	
			47.81	AC	25\%	OFFICE	
			0.00	AC	0\%	INDUSTRIAL	
			0.00	AC	0\%	STABLES/KENNELS	
			38.25	AC	20\%	PARK LAND	
					100\%		
			1	LOT		6 AC LOT	

APPENDIX B

19,967.67 gpd
0.03089 cfs

PDWF 83,673.64 gpd
604,504.76 gpd
0.12946 cfs
0.93531 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home		
Residential Area	0.00 AC		
Size of lots	0.25 AC		
Number of units	0 Units		
ADWF =			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$	
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre
Residential Area	490.19 AC
Size of lots	4 AC
Number of units	123 Units
ADWF $=\quad$ Units * 280 gpd	
0.44 gpd	

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF = 4.50
Qpd = (PF*ADWF)
Qpd =
0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

```
Qpw = PDWF+|&|
\[
\begin{aligned}
I \& I & =367,645.50 \mathrm{gpd} \\
\text { Qpw } & =367,647.47 \mathrm{gpd}
\end{aligned}
\]
```

I\&I = $750 \mathrm{gpd} / \mathrm{acre}$

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC

$$
\text { ADWF }=\quad \text { Area } * 1950 \mathrm{gpd}
$$

$$
\begin{array}{lll}
0.00 \mathrm{gpd} & 0.00 \mathrm{gpm} & 0.00000 \mathrm{cfs}
\end{array}
$$

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF = 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```


Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$\|\&\|=$			
Qpw	$=$	0.00 gpd	0.00 gpm

Motel with Kitchen
Average Dry Weather Flow (ADWF) (Qad)

Flow	2000 gpd per acre
Area	0.00 AC

ADWF = Area * 2000 gpd
0.00 gpd $0.00 \mathrm{gpm} \quad 0.00000 \mathrm{cfs}$

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$	
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Shopping Center

Average Dry Weather Flow (ADWF) (Qad)

Flow	126 gpd per acre
Area	0.00 AC

ADWF $=\quad$ Area $* 126 \mathrm{gpd}$
0.00 gpd $\quad 0.00 \mathrm{gpm} \quad 0.00000 \mathrm{cfs}$

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$	
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I$	$=$		
Qpw	$=$	0.00 gpd	0.00 gpm

Restaurant
Average Dry Weather Flow (ADWF) (Qad)

Flow	600 gpd per acre
Area	0.00 AC
ADWF $=$	
	Area * 600 gpd
	0.00 gpd

$0.00 \mathrm{gpm} \quad 0.00000 \mathrm{cfs}$

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$	
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I$	$=$	0.00 gpd	
Qpw	$=$	0.00 gpd	0.00 gpm

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF = 4.16
Qpd = (PF*ADWF)
```

Qpd = 53,051.42 gpd $\quad 36.82 \mathrm{gpm} \quad 0.08203 \mathrm{cfs}$

Peak Wet Weather Flow (PWWF) (Qpw)

$$
\begin{array}{rlrl}
\text { Qpw } & =P D W+I \& I \\
\text { I\&I } & = & 49,019.40 \mathrm{gpd} \\
\text { Qpw } & = & 102,070.82 \mathrm{gpd}
\end{array}
$$

I\& $=750 \mathrm{gpd} / \mathrm{acre}$

Industrial
Average Dry Weather Flow (ADWF) (Qad)

Flow		
Area		138.8
ADWF =	Area * 52 gpd	
	7,222.19	

5.01 gpm
0.01117 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF = 4.24
Qpd = (PF*ADWF)
Qpd = 30,620.25 gpd 0.04735 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$
$I \& I=$	$104,166.23 \mathrm{gpd}$
$Q p w=$	$134,786.48 \mathrm{gpd}$

$|\&|=750$ gpd/acre
$\begin{aligned} \mid \& I & =104,166.23 \mathrm{gpd} \\ \text { Opw } & =134,786.48 \mathrm{gpd}\end{aligned}$
93.54 gpm
0.20841 cfs

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow	13 gpd per acre
Area	0.00 AC

ADWF $=\quad$ Area $* 13$ gpd
0.00 gpd
0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$	
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& I$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

ADWF	$6,805.75 \mathrm{gpd}$	0.01053 cfs
PDWF	$29,361.27 \mathrm{gpd}$	0.04543 cfs
PWWF	$105,081.27 \mathrm{gpd}$	0.16258 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=(\mathrm{PF} * \mathrm{ADWF})$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre		
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.18 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& I$	$I \& I=750 \mathrm{gpd} /$ acre	
$I \& I=$	$43,917.60 \mathrm{gpd}$		
Qpw	$=$	$43,917.78 \mathrm{gpd}$	30.48 gpm

Multi Family Residential Homes, 20 units per AC Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw	$=$	0.00 gpd	0.00 gpm

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
$Q p w$	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw $=\quad 0.00 \mathrm{gpd}$
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre		
Area		21.20 AC		
ADWF =	Area * 126 gpd			
	2,671.40 gpd		1.85 gpm	0.00413 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.34$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=11,585.78 \mathrm{gpd}$	8.04 gpm	0.01791 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$
$I \& I$	$=15,901.20 \mathrm{gpd}$
Qpw	$=\quad 27,486.98 \mathrm{gpd}$

|\&|=750 gpd/acre

Qpw $=\quad 27,486.98$ gpd
19.08 gpm
0.04250 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Flow		195 gpd per acre
Area		21.20 AC
ADWF =	Area * 195 gpd	

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.30$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=17,775.31 \mathrm{gpd}$	12.34 gpm	0.02748 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} /$ acre	
$I \& I=$	$15,901.20 \mathrm{gpd}$		
Qpw	$=$	$33,676.51 \mathrm{gpd}$	23.37 gpm

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | :--- |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area * 52 gpd | |
| | 0.00 gpd | |}

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF =	Area * 13 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	$4,850.53 \mathrm{gpd}$	0.00750 cfs
PDWF	$20,975.03 \mathrm{gpd}$	0.03245 cfs
PWWF	$142,643.78 \mathrm{gpd}$	0.22070 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} / \mathrm{acre}$		
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	12.98 AC		
Size of lots	4 AC		
Number of units	1 Units	changed to 1 due to existing development	
ADWF = Units * 280 gpd			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.02 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& I$	$I \& I=750 \mathrm{gpd} /$ acre	
$I \& I=$	$9,733.50 \mathrm{gpd}$		
Qpw	$=$	$9,733.52 \mathrm{gpd}$	6.76 gpm

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC

| ADWF $=$ | Area 1950 gpd |
| ---: | :--- | ---: |
| 0.00 gpd | |$\quad 0.00 \mathrm{gpm} \quad 0.00000 \mathrm{cfs}$

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	PDWF $+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+(0.0206 * \mathrm{ADWF})^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial
Average Dry Weather Flow (ADWF) (Qad)

Flow		52 gpd per acre
Area		74.62 AC
ADWF =	Area * 52 gpd	
	3,880.42	

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.31$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=\quad 16,706.65 \mathrm{gpd}$

11.59 gpm
0.02583 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=55,967.63 \mathrm{gpd}$ | |
| Qpw | $=$ | $72,674.27 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre
Qpw $=\quad 72,674.27 \mathrm{gpd}$
50.44 gpm
0.11237 cfs

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

0.67 gpm
0.00150 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.40$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=4,268.37 \mathrm{gpd}$	2.96 gpm	0.00660 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	$55,967.63 \mathrm{gpd}$		
Qpw	$=$	$60,235.99 \mathrm{gpd}$	41.80 gpm

ADWF	2.78 gpd
PDWF	12.47 gpd
PWWF	$127,512.47 \mathrm{gpd}$

0.00000 cfs 0.00002 cfs 0.19729 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	170.00 AC
Size of lots	0.25 AC
Number of units	680 Units
ADWF $=\quad$ Units * 245 gpd	
2.78 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.49$		
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$		
Qpd	$=$	12.47 gpd	0.01 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=127,500.00 \mathrm{gpd}$ |
| Qpw | $=127,512.47 \mathrm{gpd}$ |

$\& \&=750 \mathrm{gpd} / \mathrm{acre}$

Qpw $=127,512.47$ gpd
88.49 gpm
0.19716 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	0.00 AC		
Size of lots	4 AC		
Number of units	0 Units		
ADWF =			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00 \mathrm{gpd}$
0.00 gpm
0.00000 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC

ADWF $=$		
	1950 gpd 0.00 gpd	0.00 gpm

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	PDWF $+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00 \mathrm{gp}$
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+(0.0206 * \mathrm{ADWF})^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$
Qpd	$=0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF =	Area * 13 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	3.85 gpd
PDWF	17.29 gpd
PWWF	$335,195.29 \mathrm{gpd}$

0.00001 cfs 0.00003 cfs 0.51862 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	223.45 AC
Size of lots	0.25 AC
Number of units	894 Units
ADWF $=\quad$ Units * 245 gpd	
$\quad 3.65$ gpd	

0.00 gpm
0.00001 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.49$		
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$		
Qpd	$=16.39 \mathrm{gpd}$	0.01 gpm	0.00003 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | $167,589.00 \mathrm{gpd}$ |
| Qpw | $=$ | $167,605.39 \mathrm{gpd}$ |

$\& \&=750 \mathrm{gpd} / \mathrm{acre}$

Qpw $=167,605.39$ gpd
116.32 gpm
0.25916 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	223.45 AC		
Size of lots	4 AC		
Number of units	56 Units		
ADWF $=\quad$ Units * 280 gpd			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.90 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ |
| ---: | :--- | ---: |
| $I \& I$ | $=167,589.00 \mathrm{gpd}$ |
| Qpw | $=\quad 167,589.90 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre
apw $=167,589.90$ gpd
116.31 gpm
0.25913 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC

ADWF $=$		
	1950 gpd 0.00 gpd	0.00 gpm

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	PDWF $+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF =	Area * 13 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	$1,955.98 \mathrm{gpd}$
PDWF	$8,541.72 \mathrm{gpd}$
PWWF	$40,328.97 \mathrm{gpd}$

0.00303 cfs 0.01322 cfs 0.06240 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=(\mathrm{PF} * \mathrm{ADWF})$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

|\&| = $750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$ gpd 0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	0.00 AC		
Size of lots	4 AC		
Number of units	0 Units		
ADWF $=\quad$ Units * 280 gpd			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre
0.00 gpm
0.00000 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow		1950 gpd per acre		
Residential		0.00 AC		
ADWF = Area * 1950 gpd				
	0.00 gpd		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	PDWF $+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
$Q p w$	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$
$I \& I$	$=$
Qpw	$=$

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = 0.00 gpd
0.00 gpm
0.00000 cfs
ADWF $=\quad$ Area $* 600 \mathrm{gpd}$
0.00 gpd $0.00 \mathrm{gpm} \quad 0.00000 \mathrm{cfs}$

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206**ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF = 4.50
Qpd = (PF*ADWF)
Qpd = 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$
$I \& I$	$=$
Qpw	$=$
	0.00 gpd
	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00 \mathrm{gpd}$
0.00 gpm
0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Flow		195 gpd per acre		
Area		0.00 AC		
ADWF =	Area * 195 gpd			
	0.00 gpd		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw	$=$	0.00 gpd	0.00 gpm

Industrial
Average Dry Weather Flow (ADWF) (Qad)

Flow		
Area		36.0
ADWF =	Area * 52 gpd	
	1,873.33	

1.30 gpm
0.00290 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.36$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=8,172.27 \mathrm{gpd}$	5.67 gpm	0.01264 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | $27,019.16 \mathrm{gpd}$ |
| Qpw | $=$ | $35,191.43 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 35,191.43$ gpd
$24.42 \mathrm{gpm} \quad 0.05441 \mathrm{cfs}$

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		6.36 AC
ADWF =	Area * 13 gpd	

82.65 gpd
0.06 gpm
0.00013 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.47$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=369.45 \mathrm{gpd}$	0.26 gpm	0.00057 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	$4,768.09 \mathrm{gpd}$		
Qpw		$5,137.53 \mathrm{gpd}$	3.57 gpm

ADWF	$227,145.70 \mathrm{gpd}$
PDWF	$775,237.96 \mathrm{gpd}$
PWWF	$949,963.96 \mathrm{gpd}$

0.35145 cfs
1.19947 cfs
1.46981 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	116.48 AC
Size of lots	0.25 AC
Number of units	466 Units
ADWF $=\quad$ Units * 245 gpd	
1.90 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)
$\left.P F=\left(18+\left(0.0206^{*} A D W F\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} A D W F\right)^{\wedge} 0.5\right)$
$\mathrm{PF}=\quad 4.50$

Qpd = (PF*ADWF)
$\begin{array}{lll}\text { Qpd }= & 8.55 \mathrm{gpd} & 0.01 \mathrm{gpm} \\ 0.00001 \mathrm{cfs}\end{array}$
Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=87,363.00 \mathrm{gpd}$ |
| Qpw | $=87,371.55 \mathrm{gpd}$ |

I\& $=750$ gpd/acre

Qpw = 87,371.55 gpd
60.64 gpm
0.13510 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre
Residential Area	0.00 AC
Size of lots	4 AC
Number of units	0 Units

ADWF $=$	Units * 280 gpd	
0.00 gpd	0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=0.00$ gpd
0.00 gpm
0.00000 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow | 1950 gpd per acre |
| :--- |
| Residential Area |
| |
| ADWF $=\quad$ Area * 116.48 AC |
| $227,143.80$ gpd |

0.35122 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=3.41$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=775,229.41 \mathrm{gpd}$	538.01 gpm	1.19869 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& I$
$I \& I$	$=87,363.00 \mathrm{gpc}$
Qpw	$=862,592.41 \mathrm{gpc}$

$|\&|=750$ gpd/acre

Qpw = 862,592.41 gpd
598.64 gpm
1.33377 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$
0.00 gpm
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+(0.0206 * \mathrm{ADWF})^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF =	Area * 13 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre		
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	$102,699.00 \mathrm{gpd}$
PDWF	$408,580.99 \mathrm{gpd}$
PWWF	$523,317.79 \mathrm{gpd}$

0.15890 cfs 0.63217 cfs 0.80969 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)
$\left.P F=\left(18+\left(0.0206^{*} A D W F\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} A D W F\right)^{\wedge} 0.5\right)$
$\mathrm{PF}=\quad 4.50$

Qpd = (PF*ADWF)
$\begin{array}{lll}\text { Qpd }= & 0.00 \mathrm{gpd} & 0.00 \mathrm{gpm} \\ 0.00000 \mathrm{cfs}\end{array}$
Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$
$I \& I$	$=r \quad 0.00 \mathrm{gpd}$
Qpw	$=$

I\& $=750$ gpd/acre

Qpw $=\quad 0.00$ gpd 0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre
Residential Area	0.00 AC
Size of lots	4 AC
Number of units	0 Units

$\mathrm{ADWF}=$	Units $* 280 \mathrm{gpd}$	
0.00 gpd	0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Multi Family Residential Homes, 20 units per AC Average Dry Weather Flow (ADWF) (Qad)

38.82 gpm
0.08649 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=3.86$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=\quad 215,934.38 \mathrm{gpd}$	149.86 gpm	0.33389 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | $21,513.15 \mathrm{gpd}$ |
| Qpw | $=$ | $237,447.53 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=237,447.53 \mathrm{gpd}$
164.79 gpm
0.36715 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.03$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=107,922.46 \mathrm{gpd}$	74.90 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} /$ acre	
$I \& I=$	$10,039.47 \mathrm{gpd}$	81.87 gpm	0.18240 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206**ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF = 4.24
Qpd = (PF*ADWF)
Qpd= 30,645.90 gpd 21.27 gpm 0.04739 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=43,026.30 \mathrm{gpd}$ | |
| Qpw | $=$ | $73,672.20 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = 73,672.20 gpd
0.11391 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		5.74 AC
ADWF =	Area * 600 gpd	
	3,442.10	

2.39 gpm
0.00532 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.32$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=14,856.45 \mathrm{gpd}$	10.31 gpm	0.02297 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& I$	$I \& I=750 \mathrm{gpd} /$ acre	
$I \& I=$	$4,302.63 \mathrm{gpd}$		
Qpw	$=$	$19,159.08 \mathrm{gpd}$	

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.21$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=39,221.79 \mathrm{gpd}$	27.22 gpm	0.06065 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw =	F+ I\&	$\|\&\|=750 \mathrm{gpd} /$ acre	
I\&I =	35,855.25 gpd		
Qpw =	75,077.04 gpd	52.10 gpm	0.11609 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=\quad 0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

Flow	13 gpd per acre			
Area	0.00 AC			
ADWF $=$	Area $* 13 \mathrm{gpd}$			
0.00 gpd		0.00 gpm	0.00000 cfs	

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

ADWF	$140,319.56 \mathrm{gpd}$
PDWF	$507,706.82 \mathrm{gpd}$
PWWF	$577,344.32 \mathrm{gpd}$

0.21711 cfs 0.78554 cfs 0.89328 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=(\mathrm{PF} * \mathrm{ADWF})$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

|\&| = $750 \mathrm{gpd} /$ acre

Qpw = $\quad 0.00$ gpd 0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	0.00 AC		
Size of lots	4 AC		
Number of units	0 Units		
ADWF $=\quad$ Units * 280 gpd			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre
0.00 gpm
0.00000 cfs

Multi Family Residential Homes, 20 units per AC Average Dry Weather Flow (ADWF) (Qad)

94.24 gpm
0.20997 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=3.60$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=488,285.13 \mathrm{gpd}$	338.87 gpm	0.75501 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& I$
$I \& I$	$=52,228.13 \mathrm{gpd}$
Qpw	$=540,513.26 \mathrm{gpd}$

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=540,513.26$ gpd
375.12 gpm
0.83576 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre		
Area		0.00 AC		
ADWF =	Area * 126 gpd			
	0.00 gpd		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.50$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$
0.00 gpm
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Flow		195 gpd per acre
Area		

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.29$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=19,421.69 \mathrm{gpd}$	13.48 gpm	0.03003 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	$17,409.38 \mathrm{gpd}$		
Qpw	$=$	$36,831.06 \mathrm{gpd}$	25.56 gpm

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$
Qpd	$=0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF $=$	Area * 13 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw	$=$	0.00 gpd	0.00 gpm

ADWF	$1,810.65 \mathrm{gpd}$
PDWF	$7,902.89 \mathrm{gpd}$
PWWF	$77,540.39 \mathrm{gpd}$

0.00280 cfs 0.01223 cfs 0.11997 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)
$\left.P F=\left(18+\left(0.0206^{*} A D W F\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} A D W F\right)^{\wedge} 0.5\right)$
$\mathrm{PF}=\quad 4.50$

Qpd = $\left(P F^{*} A D W F\right)$
$\begin{array}{lll}\text { Qpd }= & 0.00 \mathrm{gpd} & 0.00 \mathrm{gpm} \\ 0.00000 \mathrm{cfs}\end{array}$
Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$
$I \& I$	$=r \quad 0.00 \mathrm{gpd}$
Opw	$=$

I\& $=750$ gpd/acre

Qpw $=\quad 0.00$ gpd 0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre
Residential Area	83.57 AC
Size of lots	4 AC
Number of units	21 Units

ADWF = Units * 280 gpd

0.07 gpd
0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
                PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
                PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.34 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | $62,673.75 \mathrm{gpd}$ |
| Qpw | $=$ | $62,674.09 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre
apw $=62,674.09$ gpd
0.09691 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC

ADWF $=$		
	1950 gpd 0.00 gpd	0.00 gpm

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	PDWF $+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$ 0.00 gpm
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Flow		195 gpd per acre		
		9.29 AC		
ADWF =	Area * 195 gpd			
	1,810.58 gpd		1.26 gpm	0.00280 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.36$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=7,902.56 \mathrm{gpd}$	5.48 gpm	0.01222 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	$\|\&\|=750 \mathrm{gpd} /$ acre	
I\&I $=$	$6,963.75 \mathrm{gpd}$		
Qpw $=$	$14,866.31 \mathrm{gpd}$	10.32 gpm	0.02299 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=\quad 0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF $=$	Area * 13 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	887.64 gpd
PDWF	$3,909.28 \mathrm{gpd}$
PWWF	$16,711.78 \mathrm{gpd}$

0.00137 cfs 0.00605 cfs 0.02586 cfs

Single Family Residential Homes, 1/4 AC lots

Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=(\mathrm{PF} * \mathrm{ADWF})$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw $=\quad 0.00$ gpd 0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	0.00 AC		
Size of lots	4 AC		
Number of units	0 Units		
ADWF =			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.00 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw = $\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC
ADWF $=\quad$ Area * 1950 gpd	
0.00 gpd	

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.50$		
Qpd	$=(\mathrm{PF}$ *ADWF)		
Qpd	$=0.00 \mathrm{gpd}$	0.00 gpm	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$ 0.00 gpm
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

Average Dry Weather Flow (ADWF) (Qad)		
Flow		52 gpd per acre
Area		17.07 AC
ADWF =	Area * 52 gpd	
	887.64	

0.62 gpm
0.00137 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.40$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=3,909.28 \mathrm{gpd}$	2.71 gpm	0.00604 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=12,802.50 \mathrm{gpd}$ | |
| Qpw | $=$ | $16,711.78 \mathrm{gpd}$ |

$|\&|=750$ gpd/acre

Qpw $=16,711.78$ gpd

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF $=$	Area * 13 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	$85,181.07 \mathrm{gpd}$
PDWF	$338,260.47 \mathrm{gpd}$
PWWF	$690,039.72 \mathrm{gpd}$

0.13179 cfs
0.52337 cfs
1.06765 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	211.07 AC
Size of lots	0.25 AC
Number of units	844 Units
ADWF $=\quad$ Units * 245 gpd	
$\quad 3.45$ gpd	

0.00 gpm
0.00001 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+(0.0206 * \mathrm{ADWF})^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.49$		
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$		
Qpd	$=$	15.49 gpd	0.01 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$
$I \& I$	$=158,300.66 \mathrm{gpd}$
$Q p w$	$=$
	$158,316.15 \mathrm{gpd}$

|\&| = 750 gpd/acre

Qpw = $158,316.15$ gpd
109.87 gpm
0.24479 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre		
Residential Area	164.16 AC		
Size of lots	4 AC		
Number of units	41 Units		
ADWF =			
		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.66 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | $123,122.74 \mathrm{gpd}$ |
| Qpw | $=$ | $123,123.40 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=123,123.40 \mathrm{gpd}$
85.45 gpm
0.19038 cfs

Multi Family Residential Homes, 20 units per AC Average Dry Weather Flow (ADWF) (Qad)

Flow Residential Area		
		28.1
ADWF =		

38.09 gpm
0.08485 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=3.87$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=\quad 212,127.94 \mathrm{gpd}$	147.22 gpm	0.32800 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W+\|\&\|$
$I \& I$	$=$
Qpw	$=$
	$23,106.76 \mathrm{gpd}$

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 233,234.69$ gpd
161.86 gpm
0.36064 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.10$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=76,899.57 \mathrm{gpd}$	53.37 gpm	0.11891 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	$7,035.59 \mathrm{gpd}$		
Qpw	$=$	$83,935.15 \mathrm{gpd}$	58.25 gpm

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre		
Area		46.90 AC		
ADWF =	Area * 126 gpd			
	5,909.89 gpd		4.10 gpm	0.00914 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.26$		
Qpd	$=\left(\right.$ PF $\left.^{*} \mathrm{ADWF}\right)$		
Qpd	$=\quad 25,193.23 \mathrm{gpd}$	17.48 gpm	0.03895 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=35,177.93 \mathrm{gpd}$ | |
| Qpw | $=$ | $60,371.15 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Opw = 60,37115 gpd
41.90 gpm
0.09335 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		9.38 AC
ADWF =	Area * 600 gpd	
	5,628.47	

3.91 gpm
0.00870 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.27$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=\quad 24,023.59 \mathrm{gpd}$	16.67 gpm	0.03715 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw =	F+ I\&	$\|\&\|=750 \mathrm{gpd} / \mathrm{acre}$	
I\& =	7,035.59 gpd		
Qpw =	$31,059.17 \mathrm{gpd}$	21.56 gpm	0.04802 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Flow Area		195 gpd per acre		
		0.00 AC		
ADWF =	Area * 195 gpd			
	0.00 gpd		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=\quad 0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels
Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF =	Area * 13 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre		
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	$5,710.91 \mathrm{gpd}$
PDWF	$24,366.73 \mathrm{gpd}$
PWWF	$177,314.98 \mathrm{gpd}$

0.00884 cfs 0.03770 cfs 0.27435 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	45.32 AC
Size of lots	0.25 AC
Number of units	181 Units
ADWF $=\quad$ Units * 245 gpd	
0.74 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=3.33 \mathrm{gpd}$	0.00 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ |
| ---: | :--- | ---: |
| $I \& I$ | $=33,988.50 \mathrm{gpd}$ |
| Qpw | $=\quad 33,991.83 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw $=\quad 33,991.83 \mathrm{gpd}$
23.59 gpm
0.05256 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre
Residential Area	113.30 AC
Size of lots	4 AC
Number of units	28 Units

ADWF $=\quad$ Units $* 280$ gpd

0.10 gpd
0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.46 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=84,971.25 \mathrm{gpd}$ | |
| Qpw | $=$ | $84,971.71 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 84,971.71 \mathrm{gpd}$
58.97 gpm
0.13139 cfs

Multi Family Residential Homes, 20 units per AC Average Dry Weather Flow (ADWF) (Qad)

Flow		1950 gpd per acre		
Resident		0.00 AC		
ADWF $=$	Area * 1950 gpd			
	0.00 gpd		0.00 gpm	0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw	$=$	0.00 gpd	0.00 gpm

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre		
Area		45.32 AC		
ADWF =	Area * 126 gpd			
	5,710.07 gpd		3.96 gpm	0.00883 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$		
PF	$=4.27$		
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$		
Qpd	$=24,362.95 \mathrm{gpd}$	16.91 gpm	0.03767 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+\|\&\|$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=33,988.50 \mathrm{gpd}$ | |
| Qpw | $=$ | $58,351.45 \mathrm{gpd}$ |

|\& $=750$ gpd/acre

Qpw = 58,351.45 gpd
0.09023 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$
Qpd	$=0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		0.00 AC
ADWF =	Area * 13 gpd	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF}$ *ADWF $)$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

ADWF	195.75 gpd
PDWF	871.96 gpd
PWWF	$94,936.96 \mathrm{gpd}$

0.00030 cfs 0.00135 cfs 0.14689 cfs

Single Family Residential Homes, 1/4 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	245 gpd per home
Residential Area	0.00 AC
Size of lots	0.25 AC
Number of units	0 Units
ADWF $=\quad$ Units * 245 gpd	
0.00 gpd	

0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)
$\left.P F=\left(18+\left(0.0206^{*} A D W F\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} A D W F\right)^{\wedge} 0.5\right)$
$\mathrm{PF}=\quad 4.50$

Qpd = (PF*ADWF)
$\begin{array}{lll}\text { Qpd }= & 0.00 \mathrm{gpd} & 0.00 \mathrm{gpm} \\ 0.00000 \mathrm{cfs}\end{array}$
Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+\|\&\|$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

|\&| = $750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$ gpd 0.00 gpm
0.00000 cfs

Single Family Residential Homes, 2-6 AC lots
Average Dry Weather Flow (ADWF) (Qad)

Flow	280 gpd per acre
Residential Area	110.37 AC
Size of lots	4 AC
Number of units	28 Units

ADWF = Units * 280 gpd

0.10 gpd
0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

```
PF = (18+(0.0206*ADWF)^0.5)/(4+0.0206*ADWF)^0.5)
PF= 4.50
Qpd = (PF*ADWF)
Qpd= 0.44 gpd 0.00 gpm 0.00000 cfs
```

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=82,777.20 \mathrm{gpd}$ | |
| Qpw | $=$ | $82,777.64 \mathrm{gpd}$ |

$|\&|=750 \mathrm{gpd} /$ acre
57.45 gpm
0.12799 cfs

Multi Family Residential Homes, 20 units per AC
Average Dry Weather Flow (ADWF) (Qad)

Flow	1950 gpd per acre
Residential Area	0.00 AC
ADWF $=\quad$ Area * 1950 gpd	
0.00 gpd	

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& I=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I$	$=$		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Motel with Kitchen

Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750$ gpd/acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Shopping Center
Average Dry Weather Flow (ADWF) (Qad)

Flow		126 gpd per acre
Area		0.00 AC
ADWF =	Area * 126 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

| Qpw | $=P D W F+I \& I$ | |
| ---: | :--- | ---: | :--- |
| $I \& I$ | $=$ | 0.00 gpd |
| Qpw | $=$ | 0.00 gpd |

$|\&|=750 \mathrm{gpd} / \mathrm{acre}$

Qpw = $\quad 0.00$ 0.00 gpm
0.00000 cfs

Restaurant

Average Dry Weather Flow (ADWF) (Qad)

Flow		600 gpd per acre
Area		0.00 AC
ADWF =	Area * 600 gpd	
	0.00	

0.00 gpm
0.00000 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.50$	
Qpd	$=(\mathrm{PF} * \mathrm{ADWF})$	
Qpd	$=0.00 \mathrm{gpm}$	0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} / \mathrm{acre}$	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Office
Average Dry Weather Flow (ADWF) (Qad)

Peak Dry Weather Flow (PDWF) (Qpd)

| PF | $\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$ | |
| ---: | :--- | ---: | :--- |
| PF | $=4.50$ | |
| Qpd | $=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$ | |
| Qpd | $=0.00 \mathrm{gpm}$ | 0.00000 cfs |

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw $=$	$P D W F+I \& \mid$	$\|\&\|=750 \mathrm{gpd} /$ acre	
$I \& I=$	0.00 gpd		
Qpw $=$	0.00 gpd	0.00 gpm	0.00000 cfs

Industrial

\section*{Average Dry Weather Flow (ADWF) (Qad)
 | Flow | | 52 gpd per acre |
| :--- | :--- | ---: |
| Area | | 0.00 AC |
| | | |
| ADWF $=$ | Area $* 52 \mathrm{gpd}$ | |
| | 0.00 gpd | |}

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$
PF	$=4.50$
Qpd	$=\left(\mathrm{PF}{ }^{*} \mathrm{ADWF}\right)$
Qpd	$=\quad 0.00 \mathrm{gpd}$

0.00 gpm
0.00000 cfs

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	
$I \& I$	$=$	0.00 gpd
Qpw	$=$	0.00 gpd

$|\&|=750 \mathrm{gpd} /$ acre

Qpw $=\quad 0.00$ gpd
0.00 gpm
0.00000 cfs

Stables/Kennels

Average Dry Weather Flow (ADWF) (Qad)

Flow		13 gpd per acre
Area		15.05 AC
ADWF =	Area * 13 gpd	
	195.66	

0.14 gpm
0.00030 cfs

Peak Dry Weather Flow (PDWF) (Qpd)

PF	$\left.=\left(18+\left(0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right) /\left(4+0.0206^{*} \mathrm{ADWF}\right)^{\wedge} 0.5\right)$	
PF	$=4.45$	
Qpd	$=\left(\mathrm{PF}^{*} \mathrm{ADWF}\right)$	
Qpd	$=871.51 \mathrm{gpd}$	0.60 gpm

Peak Wet Weather Flow (PWWF) (Qpw)

Qpw	$=P D W F+I \& \mid$	$I \& \mid=750 \mathrm{gpd} /$ acre	
I\&I	$=11,287.80 \mathrm{gpd}$		
Qpw	$=$	$12,159.31 \mathrm{gpd}$	8.44 gpm

APPENDIX C

CITY OF BLANCO							
WASTEWATER TRUNK MAIN							
PRELIMINARY ENGINEER'S OPINION OF PROBABLE PROJECT COST							
							:11-18-2019
NO.	DESCRIPTION	UNIT	QTY		RICE		OUNT
WASTEWATER INTERCEPTOR							
	PIPE, 15" PVC SDR 26 (ALL DEPTHS INCLUDING EXCAVATION \& BACKFILL)	LF	15,800	\$	90	\$	1,422,000
	JACK \& BORE , 24" PIPE 3/8" STEEL UNDER 281 (2PL)	LF	750	\$	800	\$	600,000
	STANDARD PRE-CAST MANHOLE 5 FOOT DIAMETER (EVERY 700 FT)	EA	23	\$	11,550	\$	260,700
LIFT STATION NO. 1							
	LIFT STATION DUPLEX 30' DEEP	LS	1	\$	192,050	\$	192,050
	WET WELL \& PIPING						
	PUMPS (2) KSB MODEL E100-317/304XEG-S 40 HP, 460V 3 PHASE 60 HZ						
	EXPLOSION PROOF, ELEC SUBMERSIBLE PUMPS						
	50' POWER CABLES, SS LIFTING BAILS, 35' SS LIFTING CHAIN						
	48"X72" SINGLE DOOR ALUMINUM ACCESS COVER PEDESTRIAN LOADING						
	DUPLEX CONSTANT SPEED CONTROL PANEL						
	PRE-CAST VALVE VAULT	LS	1	\$	55,000	\$	55,000
	SWING CHECK VALVES 8"	EA	2	\$	3,750	\$	7,500
	PLUG VALVES 8"	EA	3	\$	1,750	\$	5,250
	2" ARAV	EA	1	\$	1,200	\$	1,200
	FLOW METER \& VAULT	LS	1	\$	15,000	\$	15,000
	STANDBY GENERATOR W CONCRETE PAD	LS	1	\$	75,000	\$	75,000
	ELECTRICAL: CONTROL PANEL, ATS, MAIN DISCONNECT, SUBMERSIBLE TRANSDUCER, SCADA	LS	1	\$	70,000	\$	70,000
	PIPE, 6" DUCTILE IRON FORCE MAIN AND FITTINGS	LF	1,000	\$	100	\$	100,000
	JIB CRAIN AND TROLLEY	LS	1	\$	40,000	\$	40,000
	ASPHALT DRIVE	SY	50	\$	100	\$	5,000
	CHAIN LINK FENCE W/ 16' WIDE DBL SWING GATE	LF	240	\$	100	\$	24,000
LIFT STATION NO. 2							
	LIFT STATION TRIPLEX 40' DEEP	LS	1	\$	186,772	\$	186,772
	WET WELL \& PIPING	LS	1	\$	80,000	\$	80,000
	PUMPS (3) KSB MODEL K150-317/454XEG-S 60 HP, 460V 3 PHASE 60 HZ						
	EXPLOSION PROOF, ELEC SUBMERSIBLE PUMPS						
	65' POWER CABLES, SS LIFTING BAILS, 45' SS LIFTING CHAIN						
	(3) 36 "X48" SINGLE DOOR ALUMINUM ACCESS COVER PEDESTRIAN LOADING						
	DUPLEX CONSTANT SPEED CONTROL PANEL						
	PRE-CAST VALVE VAULT	LS	1	\$	55,000	\$	55,000
	SWING CHECK VALVES 8"	EA	2	\$	3,750	\$	7,500
	PLUG VALVES 8"	EA	3	\$	1,750	\$	5,250
	2" ARAV	EA	1	\$	1,200	\$	1,200
	FLOW METER \& VAULT	LS	1	\$	15,000	\$	15,000
	STANDBY GENERATOR W CONCRETE PAD	LS	1	\$	75,000	\$	75,000
	ELECTRICAL: CONTROL PANEL, ATS, MAIN DISCONNECT, SUBMERSIBLE TRANSDUCER, SCADA	LS	1	\$	75,000	\$	75,000
	PIPE, 8" DUCTILE IRON FORCE MAIN AND FITTINGS	LF	1,000	\$	110	\$	110,000
	JIB CRAIN AND TROLLEY	LS	1	\$	40,000	\$	40,000
	ASPHALT DRIVE	SY	50	\$	100	\$	5,000
	CHAIN LINK FENCE W/ 16' WIDE DBL SWING GATE	LF	275	\$	100	\$	27,500
SITE CIVIL WORK							
	SITE WORK - CLEARING AND GRUBBING	LS	1	\$	78,000	\$	78,000
	SHEET SHORING AND BRACING	LS	1	\$	75,000	\$	75,000
	TRENCH EXCAVATION SAFETY SYSTEM ALL DEPTHS	LF	5,800	\$	5	\$	29,000
	SILT FENCE FOR EROSION CONTROL	LF	4,000	\$	5	\$	20,000
	NATIVE GRASSLAND SEEDING AND PLANTING	SY	4,000	\$	6	\$	24,000
	BARRICADES, SIGNS \& TRAFFIC HANDLING	MON	3	\$	4,000	\$	12,000
	STABILIZED CONSTRUCTION ENTRANCE	EA	2	\$	2,000	\$	4,000
	TREE PROTECTIVE FENCING, TYPE A, CHAIN LINK FENCE, INCLUDING BOARDS FOR TREE TRUNK PROTECTION	LF	1,000	\$	5	\$	5,000
	STORM WATER POLLUTION PLAN	LS	1	\$	6,000	\$	6,000
	MOBILIZATION, BONDS, INSURANCE, SUBMITTALS, DEMOBILIZATION AND CLOSEOUT, COMPLETE IN PLACE	LS	1	\$	190,446	\$	190,446.08
	SUBTOTAL					\$	3,999,368
	CONTINGENCIES (+/- 25\%)					\$	999,632
	TOTAL ESTIMATED CONSTRUCTION COST					\$	4,999,000
NOTES							
	The Engineer has no control over the cost of labor, materials or equipment or over the Contractor(s) methods of determining						
	prices. The engineer not and does not guarantee the proposals, bids or construction costs will not vary from the opinion of						
	probable cost prepared by him.						
2 This estimate does not include right-of-way or easement acquisition.							

